General Higher-Order Lipschitz Mappings
نویسندگان
چکیده
منابع مشابه
Construction of Integrals of Higher - Order Mappings
Ken-ichi MARUNO1,2, and G. Reinout W. QUISPEL3,4 1Department of Mathematics, The University of Texas-Pan American, Edinburg, Texas 78539-2999, USA 2Faculty of Mathematics, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, 812-8581 3 Department of Mathematics, La Trobe University, Melbourne, Victoria 3086, Australia 4 Centre of Excellence for Mathematics and Statistics of Complex Systems, La Tro...
متن کاملGenerating Continuous Mappings with Lipschitz Mappings
If X is a metric space then CX and LX denote the semigroups of continuous and Lipschitz mappings, respectively, from X to itself. The relative rank of CX modulo LX is the least cardinality of any set U \LX where U generates CX . For a large class of separable metric spaces X we prove that the relative rank of CX modulo LX is uncountable. When X is the Baire space NN, this rank is א1. A large pa...
متن کاملLipschitz Spaces and Harmonic Mappings
In [11] the author proved that every quasiconformal harmonic mapping between two Jordan domains with C, 0 < α ≤ 1, boundary is biLipschitz, providing that the domain is convex. In this paper we avoid the restriction of convexity. More precisely we prove: any quasiconformal harmonic mapping between two Jordan domains Ωj , j = 1, 2, with C, j = 1, 2 boundary is bi-Lipschitz.
متن کاملLipschitz Properties of Convex Mappings
The present paper is concerned with Lipschitz properties of convex mappings. One considers the general context of mappings defined on an open convex subset Ω of a locally convex space X and taking values in a locally convex space Y ordered by a normal cone. One proves also equi-Lipschitz properties for pointwise bounded families of continuous convex mappings, provided the source space X is barr...
متن کاملBi-Lipschitz Mappings and Quasinearly Subharmonic Functions
After considering a variant of the generalized mean value inequality of quasinearly subharmonic functions, we consider certain invariance properties of quasinearly subharmonic functions. Kojić has shown that in the plane case both the class of quasinearly subharmonic functions and the class of regularly oscillating functions are invariant under conformal mappings. We give partial generalization...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematics
سال: 2021
ISSN: 2314-4785,2314-4629
DOI: 10.1155/2021/5570373